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This paper discusses the influence of turbulence convection on the formation of 
acoustic momentum and thermal boundary layers over a rigid surface in the presence 
of a low Mach number wall-turbulence shear flow. Equations which determine the 
modified boundary-layer profiles are obtained from a consideration of the relaxation 
of coherent perturbations in the Reynolds stress. These equations can be solved 
analytically for a wide range of conditions which are investigated in detail. The theory 
is applied to the problem of sound propagation in fully-developed turbulent pipe flow, 
and a t  low Mach numbers good agreement is obtained between predicted acoustic 
attenuation rates and experimental results available in the literature. 

1. Introduction 
There are two principal mechanisms by which sound is attenuated by turbulence. 

The first is radiation damping, whereby secondary sound waves are produced and 
scattered out of the line of propagation of the incident sound (Lighthill 1953; Kraichnan 
1953; Batchelor 1957; Howe 1973). This tends to dominate a t  frequencies exceeding 
that characteristic of the turbulent fluctuations. At lower frequencies, corresponding 
to acoustic wavelengths greatly in excess of the turbulence correlation scale, the 
attenuation is caused by a direct transfer of energy to the turbulence (Noir & George 
1978). In  this case the periodic straining of turbulent vortex lines by the sound cannot 
be regarded as reversible, there being sufficient time in an acoustic cycle for energy to 
be redistributed amongst the various degrees of freedom of the turbulence through 
their nonlinear couplings. 

The thermo-viscous attenuation of sound (caused by molecular diffusion) is known 
to increase significantly in the presence of rigid surfaces, such as when sound propa- 
gates within a tube. It might be anticipated, therefore, that low frequency attenuation 
associated with turbulence relaxation would be similarly enhanced. This is confirmed 
by the experiments of Ahrens & Ronneberger (1971) and of Ingard & Singhal (1974) 
involving standing waves in turbulent pipe flows. Velocity gradients are large near the 
pipe wall, and the dominant turbulence relaxation processes would accordingly be 
expected to occur within the turbulent wall layers, and to be equivalent to an acoustic 
modulation of the shear stress exerted on the pipe. Ingard & Singhal assumed that the 
modulation frequency was so low that the properties of the mean turbulent flow over 
the whole cross-section of the pipe could be taken to vary in a quasi-static manner, 
corresponding to a slow fluctuation in the mean velocity. This hypothesis leads to a 
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semi-empirical formula for the attenuation which involves the mean velocity in the 
pipe, but exhibits no dependence on the acoustic frequency. In  this respect their 
approach is analogous to that underlying Bradshaw’s (1967) analysis of turbulent 
boundary-layer surface stress fluctuations produced by large-scale ‘ inactive’ 
components of the turbulent field. 

In this paper the question of the interaction of sound with a turbulent wall layer is 
examined as an extension of the Reynolds stress relaxation analysis of Crow (1967, 
1968), who was concerned with the interaction of large-scale disturbances with free 
space homogeneous, isotropic turbulence. The no-slip condition at the wall results in 
the formation of acoustic momentum and thermal boundary layers which are subject 
to the modifying influences of turbulent diffusion normal to the wall. A theoretical 
model is proposed which incorporates both molecular and turbulence diffusion, and 
which leads to an analytic representation of the turbulence-controlled acoustic 
boundary layers. The theory is strictly appropriate at  low mean flow Mach numbers, 
and for acoustic frequencies which are sufficiently large that the widths of them 
boundary layers do not exceed that of the constant shear stress (or ‘logarithmic’) 
region close to the wall. This condition is satisfied in most practical applications and 
for available experimental data. The discussion is based on arguments originating in 
the rapid distortion theory of Ribner & Tucker (1952) and Batchelor & Proudman 
(1954), which have been discussed in detail by Crow (1967,1968) and by Noir & George 
(1978) in the absence of boundaries. 

The general problem of the interaction of sound with it low Mach number turbulent 
wall layer is examined in 8 2 of this paper. A detailed analytical discussion is given of 
the effect of turbulence on the momentum boundary layer of the acoustic field, and 
conditions are obtained under which the proposed theory is expected to be valid. In 
§ 3 the analysis is extended to include the effects of heat transfer by turbulent con- 
vection, leading to a modified representation of the thermoacoustic boundary layer. 
When the turbulence friction velocity v* is allowed to vanish, the analytical repre- 
sentations of these boundary layers reduce to those describing the classical Kirchhoff- 
Stokes exponential forms, and the theory provides a transition formula connecting 
the opposite extremes in which the boundary layers are controlled respectively by 
molecular and turbulent diffusion. Application is made ( 3  4) to the theory of sound 
propagation in turbulent pipe flow; excellent agreement is obtained between predicted 
attenuations and experimental determinations cited above for mean flow Mach 
numbers less than 0.3. This is consistent with the low Mach number approximation. 

This favourable agreement gives some confidence in an application of the present 
theory -whose specialized conclusions will be reported elsewhere - to the calculation 
of the wavenumber-frequency spectrum of the surface pressure beneath a turbulent 
boundary layer. The surface pressure spectrum predicted by Ffowcs Williams (1965), 
and subsequently in more detail by Bergeron (1974), exhibits a singularity at the 
critical wavenumber k = w / c  (where w is the radian frequency and c the speed of 
sound), corresponding to sound waves which propagate along the boundary layer 
parallel to the wall. These authors took no account of the interactions of such waves 
with the boundary-layer turbulence through which they pass, nor of the fluctuations 
in the surface shear stress ‘dipoles’ (Curle 1955), which must act to alleviate the 
secular growth in the pressure signature at the critical wavenumber. 



The interaction of sound with wall turbulence 731 

H 
"O ti 

FIGURE 1, Schematic illustration of the configuration 
of the wall-turbulence shear flow. 

2. Momentum transfer in the acoustic boundary layer 
Consider the low Mach number wall-turbulence shear flow depicted schematically 

in figure 1. The mean flow is parallel to the x1 axis of a rectangular co-ordinate system 
(x1,x2,x3), and is confined to theregionx, > 0 adjacent to a smooth, rigid wall occupying 
the plane x, = 0. The mean velocity is denoted by U,(x,), and is assumed to be 
effectively independent of x1 for distances comparable with all relevant length scales 
of the problem. We examine the interaction of the shear flow with an acoustic field 
whose wavelength greatly exceeds the width L, say, of the constant shear stress region 
of the wall turbulence. In boundary-layer flow L 2, 6,, the displacement thickness, 
and in turbulent pipe flow L is about one tenth of the pipe radius (Hinze 1975,s 7). For 
x2 > L we write U, = U = constant. 

When sound is incident on turbulence located in free space the consequent straining 
of the turbulent vortex lines produces variations in the Reynolds stress which are 
coherent over distances of the order of the acoustic wavelength. The fluctuating 
Reynolds stress ri is defined by 

(2.1) 

where p is the fluid density, v the velocity relative to the local mean flow, and the angle 
brackets ( ) denote an ensemble average in the absence of the incident sound. The 
interaction will result in a significant transfer of energy from the acoustic field to the 
turbulence provided that the relaxation time, during which nonlinear processes 
smooth out coherent variations in r i j ,  is small compared with the period of the sound 
wave; otherwise the periodic straining of the vortex lines is reversible, and acoustic 
energy losses arise only through the generation of scattered, secondary sound waves. 
When the wavelength is large compared with the characteristic scale L, scattering is 
of minimal significance (Noir & George 1978) and will be ignored in the present 
diccussion. 

In  the presence of a rigid wall an acoustic boundary layer is formed at  the surface 
where the no-slip condition must be fulfilled. As a result the length scale of the acoustic 
perturbation is now very much smaller than the acoustic wavelength, and the corre- 
sponding rate of strain of the wall turbulence is likely to be several orders of magnitude 
larger than it would be in the absence of the wall. A greatly increased rate of energy 
transfer from the sound to the turbulence may therefore be anticipated. In  order to 

Ti j  = Pvi vj - (pvi vj) 
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quantify the interaction mechanism we introduce a formal extension of the free space 
analyses of Crow (1967, 1968) and Noir & George (1978). 

Let ;iij denote the coherent component of the Reynolds stress: 

where the overbar defines an ensemble average in the presence of the incident sound. 
The rate of change of Tij will be expressed in terms of the difference in the competing 
effects of the straining of the turbulence by the sound, which induces the coherent 
perturbation in the stress, and the tendency for that coherence to decay through 
nonlinear interactions of the components of the turbulence and viscous dissipation 
(cf. Crow 1967, 1968; Noir & George 1978). This difference is formally represented in 
a manner consistent with linear acoustics by the following lineaf relation between Tij 
and the acoustic perturbation velocity B : 

where (2.4) 

In equation ( 2 . 3 )  (q z )  = (q(x,)Z) = (viwi), and po is the mean fluid density which is 
taken to be constant. Within the logarithmic region of the turbulent wall layer, 
for which 3 0 v / v ,  5 xz 5 L ( v  being the kinematic viscosity and v, the friction velocity) 
it is known from experiment that (qz )  2: 6 - 1Ovi (Hinze 1975, pp. 642, 728). 

The tensor coefficient Aiikl, which also depends on xz, has components of order unity, 
and determines the coherent change in rij which occurs when nonlinear turbulence 
interactions are ignored. In principle Aiikl may be expressed in terms of assumed 
properties of the turbulence in the wall layer by the methods of rapid-distortion theory 
(Ribner & Tucker 1952; Batchelor & Proudman 1954). For example, in the very 
special case of homogeneous, isotropic turbulence Noir & George (1978) have used the 
results of Ribner & Tucker to show that at  large distances from the wall 

Aijk, = &j[48(k&jl+ 78ij8ki). (2.5) 

The final term on the right-hand side of ( 2 . 3 )  accounts for the decay of Ti j  due to its 
departure from the null equilibrium value, and arises from viscous dissipation and 
nonlinear processes ignored in rapid distortion theory. The time scale of this decay is 
of the same order as that which characterises the evolution of the turbulence, i.e. 

4%) - " * / k  (2.6) 

where 1 is an appropriate turbulence length scale: within the constant shear stress 
region I - xz (Hinze 1975, 5 7).  In  general u(xz) is also a function of i, j, but it will 
suffice to suppress an explicit representation of this dependence, since only Ti2, with 
the i direction in the plane of the wall, will turn out to be relevant in the present 
discussion. 

Consider next an acoustic disturbance of radian frequency w > 0. In  the vicinity of 
the wall set 

ex~{i(kixi-ot)), (2.7) 
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where p is the acoustic pressure, and k4 is the acoustic wavenumber in the i direction 
parallel to the wall, so that lkil 5 o / c ,  c being the speed of sound. For the remainder 
of this section the suffix i will represent a fixed direction in the (xl, x3) plane to which 
the summation convention for repeated suffixes will not apply. The assumption of long 
acoustic wavelength introduced above implies that 

kiL$ 1. (2.8) 
A A  

To determine the behaviour of Tii = Vi(x2) near the wall a ‘boundary layer’ type of 
approximation which is valid at low Mach numbers will now be developed. Variations 
in the properties of the mean flow due to compressibility are neglected, in which case 
near the wall the i component of the momentum equation assumes the form 

D -  ap aTi, Po” a . - -(pv.)+- = --++povv2iii+--(dlvu) 
Dt 2 axi ax, 3 ax< 

for a Stokesian fluid. Within the turbulent wall layer (2.7) implies that 

A 

aFi2 

ax2 
N - -- exp(i(kixi-ot)} (2.10) 

since ki8, < 1,8, being the width of the acoustic boundary layer. Similarly the leading 
boundary-layer contribution from the viscous terms of (2.9) is provided by 

Po vv2ui Po v aa;ii,/ax;. 

Density fluctuations give a second-order contribution in the first term on the left of 
(2.9), so that on substituting from (2.7) we have within the acoustic boundary layer 

A 
-io pi-$$) = -pox  i aTi2 +v&, a p e .  

(2.11) 

where, in addition, we have set D/Dt  = a/at, with an error N O(MJ relative to unity, 
M, = U,/c being the local mean flow Mach number which is assumed to be small. 

In  this equation variations in the pressure I ,  are insignificant when the acoustic 
wavelength is large. The final term on the right-hand side involving the kinematic 
viscosity v becomes comparable with the Reynolds stress term for v*xZ/v 5 30, where 
viscous diffusion of momentum is no longer small in comparison with turbulent 
convection. Within the viscous sublayer (v* x 2 / v  < 5- 7) convection by the turbulence 
is negligible. 

When similar approximations are applied to the i2-component of the Reynolds 
stress equation (2.3) we obtain in the boundary layer 

where Di N O(1) and is given by 

(2.12) 

Di = AiZzi + AiZi2 (no summation). (2.13) 
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Elimination of the shear stress fluctuation giz between equations (2.1 1) )  (2.12) leads 
to the following boundary-layer equation describing thevariation of T i i  close to the wall: 

(2.14) 

In the exterior flow region (x2 $ S,) the first term on the left, which accounts for the 
lateral diffusion of momentum, is negligible, and (2.14) yields the free field relation 

s ki A 
ui = -p.  

Pow 
(2.15) 

Actually this result is strictly valid only in the absence of acoustic interactions with 
the free-stream turbulence. The inclusion of such effects in the analysis results in a 
modified relation between &, $ which differs from (2.15) by terms of relative order - m9,< 1 (m, = v , / c )  (Noir & George 1978). 

The diffusive term on the left of (2.14) accounts for the rapid variation of & a t  the 
wall, the diffusivitv 

(2.16) 

being the sum of the molecular diffusivity v and a frequency-dependent turbulent 
diffusivity en,, say. Viscous diffusion predominates within the viscous sublayer, where 
8, is very small, and equation (2.14) reduces to that describing the Stokes laminar 
boundary layer (Lighthill 1978, page 130). 

The detailed behaviour of Gi depends on the way in which E ,  varies with xz ,  and this 
apparently precludes further analytical discussion of the general case. Progress is 
possible, however, in the quasi-static approximation to the turbulent diffusivity, i.e. 
when its dependence on w is neglected. This approximation, whose validity will be 
examined a posteriori, requires that the acoustic period is large compared with the 
turbulence time scale, i.e. that 

w <  d X 2 )  (2.17) 

in the range of values of x2 for which the acoustic-turbulence interaction is significant. 
Equation (2.12) indicates that in this approximation the shear stress ;iz is in phase 
with the acoustic rate of strain, its value adjusting instantaneously with the acoustic 
field. 

Quasi-static approximation to the momentum diflusivity 

It is convenient to introduce a dimensionless parameter K by means of the definition 

in which case it follows from (2.14) that in the quasi-static approximation 

where 8, = KV*X2. 

It is now postulated that em does not differ substantially in 
eddy viscosity which characterizes the behaviour of the mean 

(2.18) 

(2.19) 

(2.20) 

magnitude from the 
velocity profile close 
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to the wall; indeed, as w -+ 0 we recover from (2 .19)  the equation for the mean 
velocity profile in the presence of a mean pressure gradient ik$- ap/8xi.  Within 
the logarithmic region, where diffusion is controlled by turbulent convection 
(30v /v ,  s x 2  5 L) ,  K coincides with the von K&rm&n universal constant ( K  21 0.4) ,  
and e, varies linearly with x2 (Hinze 1975, pp. 645, 730) .  For smaller values of 
x2,  emm0c x; (n 2 2 ) .  We shall ignore such departures from linearity, and assume that 
K may be taken as constant within the acoustic boundary layer. The error involved 
in this further approximation will be shown to be insignificant. 

Recalling that 6 does not vary across the boundary layer, we find that when K is 
constant equation (2 .19 )  can be solved in closed form in terms of the Hankel function 
Hhl)(z). The solution which satisfies the nodip condition at  the wall and tends to the 
free field perturbation velocity ki$/pow is given by 

(2 .21)  

where I m { ( 4 i w v / ~ ~ v 2 , ) 3 }  > 0. Observe that this result reduces to the exponential 
Stokes layer form as the turbulence intensity tends to zero (v* -+ 0).  

The width 8, of the acoustic boundary layer defined by (2 .21)  depends on the value 
of the dimensionless parameter 4 w v / ~ ~ v 2 , ,  which can also be expressed in the form 

4wv 4 St 
K ~ V ~  K ~ P ~ '  Re ' 
- = - -  

in terms of Reynolds and Strouhal numbers defined respectively by 

U A  UA 
V U 

R e = - ;  S t = - ,  

(2 .22)  

(2.23) 

where A is an arbitrary length scale, and P N 0.04 is approximately constant, with 
v* = PU (Hinze 1975, 9 7 ) .  

The real and imaginary parts of the boundary-layer profiles are illustrated in 
figure 2 for 4 w v l ~ ~ v :  = 0.1,  1 ,  10, as functions of K V ,  x 2 / v  and v* x 2 / v ,  the latter scale 
being calculated on the assumption that K = 0 - 4  (the function H,jl)(xi*) is given in 
tabular form by Jahnke & Emde 1945). The dashed curves in this figure represent the 
component of velocity which is in phase with the pressure gradient ik$, and determine 
the rate at  which the acoustic energy is dissipated through the action of viscosity and 
conversion to turbulence. The width of the boundary layer may be defined by the value 
of x2 at which the real part of the velocity first attains its free field value (unity in the 
figure). A detailed inspection of the numerical results reveals that in the range 
0.1 < ~ O V / K ~ V :  < 30, expected to be important in applications (see $4), 8, is well 
approximated by the formula 

4wv 4 . 7 1  Kv*8A -- - 1@8(-) . 
V K2V$ 

(2.24) 

The importance of the turbulent fluctuations in determining the structure of the 
boundary layer may be surmised from a consideration of the dissipation rate. At low 
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FIGURE 2. Acoustic momentum bpndazy-layer profiles %/ (k, 6 / p o  w )  $*determined by 
equation (2.21) : - 9 Re I % l ( k , P / f  0 w ) )  ; - - - -, Im { - % / ( k ' P / f  0 (41. 

frequencies dissipation occurs principally through the ceding of energy to the turbulent 
field; with increasing frequency, however, a progressively larger fraction of the dissi- 
pated energy is converted directly into heat in the viscous sublayer. The rate of 
dissipation per unit area of the wall, E ,  say, is given by 

(2.25) 

where the real parts of Ed,  p ,  defined in (2.7), are to be taken. The integral can be 
evaluated from the solution (2.21) to yield 

(2.26) 

As v* -+ 0 (absence of turbulent fluctuations) the real part of the term in the curly 
brackets of this equality is ultimately equal to unity, and (2.26) reduces to 

(2.27) 

which is the viscous rate of dissipation per unit area (Lighthill 1978, p. 133). The ratio 
E / E y  is accordingly a measure of the influence of the boundary-layer turbulence on the 
sound, and its variation as a function of 4 w v I ~ ~ v 2 ,  is depicted in figure 3. The greatest 
departures from the viscous controlled boundary layer occur for 4 0 v I ~ ~ v 2 ,  < I, and 
E/Eu is within 50 yo of its high frequency asymptote for ~ W V / K ~ V $  > 1.8. 

Now an examination of the experimental results of Schubauer (1954) and Laufer 
(1954), reproduced on pp. 644 and 731 of Hinze (1975), indicates that K 2: const. N 0.4 
for v*x2/v 2 30, and diminishes rapidly to zero for smaller values of x2. Hence, using 
(2.24), the condition 4 w v / ~ ~ v 2 ,  < 1 for the boundary layer to be effectively controlled 
by turbulent diffusion becomes 

!!fb > 27, (2.28) v N  
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FIUURE 3. Rate of dissipation of acoustic energy per unit area of the wall due to viscosity and 
conversion to turbulence (E) normalized with respect to the viscous dissipation E, in the 
absence of turbulence. 

i.e. that the boundary layer should reach out at least to the inner edge of the 
logarithmic region of the wall shear flow. For such values of S, it may be assumed 
that K = 0.4, and indeed this value can also be used in the high frequency region since 
we havealready seen fromfigure 3 that the departures from the Stokes layer asymptotic 
limit are small for ~ W V / K ~ V ~  > 1. The variation of EIE, as a function of v*S,/V 
( K  = 0.4) is also given in figure 3. 

It remains to establish the validity of the quasi-static approximation (2.17) used in 
the derivation of the boundary-layer equation (2.19). Use of (2.18) shows that the 
necessary condition is that 

(2.29) 

for values of x2 < S,. From (2.24) it  is seen that this will be satisfied provided that 

(2.30) 

Within the logarithmic region of the wall layer ( q 2 )  is typically of order 6v;. 
The value of the coefficient Di defined in (2.13) is more difficult to estimate, but it 
probably does not differ greatly from the value given by equation (2.5) for homo- 
geneous, isotropic turbulence, viz. Di = &. Taking these values, and setting K = 0.4, 
we find from (2.30) 

4ov - < 8.35. 
K%a* 

(2.31) 

It has already been argued that the acoustic-turbulence interaction is important 
only for ~ w v / K ~ v ~ ,  < 1. Thus it may be tentatively concluded that the quasti-static 
approximation (2.20) for the turbulence diffusivity E, is justified for constant K at all 

25 FLm 94 
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frequencies for which 8, < L,  i.e. for which the acoustic boundary layer does not 
extend beyond the logarithmic region of the mean flow. Using (2.24) this condition 
can be expressed in the form 

40v 104 
K 2 V i  > (VV) 1'41 ' (2.32) 

in general v* L/v  > 300, and (2.32) is likely to be satisfied over a wide range of practical 
situations, including the experimental data examined later in this paper, 

3. Heat transfer within the acoustic boundary layer 
The analysis of 5 2 has taken no account of the periodic variations in fluid tempera- 

ture arising from the compressions and rarefactions of the wall shear flow by the sound. 
The classical Kirchhoff-Stokes theory predicts that the dissipation involved in the 
establishment of a fluctuating thermal boundary layer is comparable in magnitude 
to that due to viscosity. To examine the situation in the presence of wall turbulence 
we shall assume that the transfer of heat is described by the quasi-static diffusion 
eauation 

in which T is the temperature and s is the specific entropy. The transport coefficimt K 
is defined by 

where x is the thermometric conductivity, cp the specific heat at  constant pressure, 
and co is a thermal eddy diffusivity. At points within the logarithmic region of the wall 
flow K is expected to vary linearly with x2 (see, e.g., Rotta 1960), and we shall write 

K = PC,(X+%), ( 3 4  

pt being the turbulence Prandtl number. Blom (1970) has concluded from a survey of 
available experimental data for air that Pt - 0.7-0-8. Bradshaw (1977) quotes a value 
of 0.91, however. In  the application to be described below such small differences in the 
value of Pt have a relatively minor effect on the theoretical predictions, and we shall 
accordingly assume that Pt = 0.8. 

Use of the thermodynamic relation 

Tds = c , d T - l d p ,  
P 

enables (3.1) to be reduced to the boundary-layer form 

(3.4) 

A 

where is the acoustic temperature fluctuation defined as in (2.7), the O(M,) con- 
vective component of the material derivative D/Dt has been discarded, and variations 
in the mean density can be ignored. As in 5 2,$ may be regarded as constant across the 
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boundary layer, and the solution of (3.5) which satisfies the usual wall condition of 
vanishing fluctuating temperature assumes a form analogous to (2.21): 

When pt = 0.8, XP? does not differ significantly from v for air, and the principal 
characteristics of this solution are therefore very similar to  those already discussed 
for the velocity distribution (2.21). 

4. Attenuation of sound in turbulent pipe flow 
The results of $ 3  2 , 3  will now be applied to the propagation of sound in a smooth- 

walled pipe of uniform cross-sectional area &' in the presence of a low Mach number 
fully developed turbulent mean flow. This will permit comparison of predictions of 
the theoretical model with existing experimental results. Attention is confined to  one- 
dimensional propagation parallel to  the axis of the pipe which is taken in the x1 
direction. 

Integration of the x1 component of the momentum equation (2.9) across the pipe 
gives 

where mean viscous stresses in the flow are neglected in comparison with the normal 
turbulent stress Tll. I n  equation (4.1) 

(5) = as, 

dS is the cross-section area element, a the perimeter of the pipe, and, except in regions 
very close to  the wall, the mean velocity U may be regarded as constant. The derivative 
(aiil/ax2),2,0 is evaluated at the pipe wall, x2 being a temporary local co-ordinate 
normal to the wall (x2 = 0) .  

In  the same approximation the integrated form of the continuity equation can be 
set in the form 

variations in the mean thermodynamic properties of the flow being small a t  low Mach 
numbers. The integral in (4.3) is simplified by means of equations (3.1), (3.2): 

where To is the mean temperature. I n  evaluating the integral on the right-hand side 
we write e0 = i3@ = const., since the diffusivity is effectively uniform within the core 
of the pipe flow. An equally adequate approximation permits the replacement of F/To 

25-2 
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FIGURE 4. Real and imaginary parts of F(z&)  defined in equation (4.9). 

in the integrand by the adiabatic representation ( y  - 1)  P/p,c2, y being the ratio of the 
specific heats, so that (4.3) now reduces to 

(4.5) 
(7 - 1)  E,  a2P 

-_. 

and the elimination of A between this result and equation (4.1) gives finally 

In  order to obtain the dispersion relation between the frequency w and the wave- 
number k in the case of an acoustic field which varies in proportion to exp {i(ks1 - wt)},  
as in (2.7), the boundary-layer solutions (2.21), (3.6) must first be used to express the 
surface derivatives in (4.6) in terms of P = p .  The contribution from the integrated 
normal str.ess Fll can be estimated from equation (3.3) by setting 5, = k p / p , o  within 
the core region. In  this way we obtain 

where M = U / c ,  and 9 ( u )  is determined by the terms on the right of (4.6) and is 
responsible for the attenuation of the sound by the acoustic-turbulence interaction. In 
simplifying the general expression for 9 we must set M = 0, Ikl = w / c  in order to 
achieve consistency with the boundary-layer approximations of $3 2,3, in which 

- case 
iw3 2Allllq2 

S ( w )  = - c4 [ 3 - i w  + Ee(y - 1 )) 

where m, = V J C ,  and an overbar now denotes a core-averaged quantity. 
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The complex-valued function F(x& is defined by 

74 1 

and its real and imaginary parts are plotted in figure 4 for the range of values of x 
important in applications. 

The imaginary part of 9 ( w )  determines the magnitude of the acoustic attenuation. 
Introducing 

it follows that in the leading approximation, for small 
dispersion relation (4.7) are given by 

0 

C 
( l + - M ) k * =  +- - - + i " ( W ) ,  

(4.10) 

a(w) ,  the roots k = k, of the 

(4.11) 

the + / - sign being taken according as propagation is in the + / - direction of the 
x1 axis, and the wave amplitude decays as 

The first term on the right of equation (4.8) arises from the interaction of the sound 
with the turbulence in the core region of the pipe flow. The corresponding component 
of the attenuation coefficient a ( w ) ,  viz. 

(4.12) 

must therefore be identical in form with that describing propagation in free space 
turbulence. 

Noir & George (1978) have discussed the influence of Reynolds stressrelaxationonthe 
propagation of sound through homogeneous, isotropic turbulence (with M = U / c  = 0). 
In their analysis the frequency w was assumed to be large compared with the inverse 
relaxation time 3, and effects of heat transfer were ignored. This gave a frequency- 
independent expression for the attenuation coefficient which, in the present notation, 
had the form 

(4.13) 

corresponding to the high frequency limit of the first term on the right-hand side of 
(4.12). It is apparent from equation (4.12) that, except at very low frequencies, 
attenuation due to Reynolds stress relaxation is a slowly varying function of w .  In  
particular, the attenuation of aerodynamically generated sound (Lighthill 1952), for 
which w N 3, is effectively uniform in frequency. 

The relative importance of Reynolds stress relaxation and the heat transfer corn- 
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FIGURE 5 .  Comparison of calculated attenuation coefficient an( o) with experimental results of 
Ingard & Singhal (1974) for a fixed frequency w/2n = 1100 H z  and a range of values of the mean 
flow Mach number M .  -, theory, P ,  = 0.8; . . . . , theory, P ,  = 2.5; - - - - , theory, no heat 
transfer effects. 

ponent of (4.12) can be estimated in terms of the turbulence Mach number m = mi/c, 
and correlation length I, say. Observing that Co - (a9. 1, we have in order of magnitude 

Reynolds stress relaxation 2 (c) ’ 
a ratio which is of order unity for aerodynamic sound. This fact may be significant in 
resolving some of the differences between theory and experiment reported by Noir & 
George ( 1978). 

Return now to the pipe flow problem. A simple order of magnitude comparison of 
the terms on the right of (4.8) confirms that at low Mach numbers the attenuation is 
controlled by the second, surface interaction component. The attenuation coefficient 
ap(w) ,  say, therefore becomes 

heat transfer 1 wl 2 

(4.14) 

It should be noted that the limiting value of this result as v* + 0 coincides with the 
Kirchhoff-Stokes attenuation coefficient for sound propagation in the absence of 
turbulence, since Re P(x& -+ 5 / 4 2  as x -+ 00. 

According to  the semi-empirical theory of Ingard & Singhal (1974) the attenuation 
does not depend on the frequency, and these authors performed experiments in air at 
a fixed frequency to investigate the dependence of ap on the mean flow Mach number M .  
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FIGURE 6. Comparison of the calculated normalized attenuation coefficient a, D and experi- 
mental results of Ahrens & Ronneberger (1971)  over a range of frequenciesf Hz and different 
mean flow Mach numbers M .  Theory, - ; experiment : , M = 0 ; A, M = 0 1 ; , M = 0.2 ; 
0, M = 0.3. 

The experiments involved a standing acoustic wave pattern of frequency f = 1100Hz 
in a tube of rectangular cross-section 1.905 x 2.223 om2, the mean velocity varying in 
the range U = 0-170 m s-l. The results are reproduced in figure 5, and it is clear from 
the spread of the data points that the accuracy of the measurements is not particularly 
great. The curves plotted in figure 5 are based on equation (4.14). The full curve gives 
the predicted attenuation for the following parametric values for air: 

v = 0 - 1 5 ~ r n ~ s - ~ ;  x = 0.21 cm2s-l; c = 34000cms-l; 

K = 0.4; pt = 0.8; v* = 0.04U ( M  = U / c ) .  

The dashed curve illustrates the attenuation that would result from shear stress 
relaxation alone [i.e. from the first term in the brace brackets of (4.14)]. 

It is apparent that in the low Mach number region M < 0.3, say, where theory and 
experiment may be expected to conform, the dashed (shear stress) curve systematically 
underpredicts the attenuation. The inclusion of heat transfer effects greatly improves 
the comparison with experiment. A better fit is obtained in the low Mach number 
range, however, by taking a larger value for the turbulence Prandtl number, viz., 
pt = 2.5; this corresponds to the dotted curve in figure 5. In  any event the agreement 
between experiment and the theoretical formula (4.14) may be claimed to be satis- 
factory for M < 0.3. 

A further experimental comparison can be made witlh the standing wave measure- 
ments in air of Ahrens & Ronneberger (197 1) who used a smooth-walled circular tube 
of diameter D = 7.5 cm. Their experimental results expressed in terms of ap D are 
shown in figure 6 for M = 0, 0.1, 0.2, 0.3 and a range of values of the frequency 
f = o/2n. The curves plotted in figure 6 are calculated from (4.14) (with pt = 0.8), the 
case of M = 0 being the Kirchoff-Stokes limit obtaining as V* + 0. Although there is 
a large spread in the experimental results, a reasonable agreement between theory and 
experiment is found for M 6 0.2. Significant differences are apparent for M = 0.3, 
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and, as in the case of the Ingard-Singhal experiments, this apparently sets the upper 
Mach number limit of validity of the present theory. 

In conclusion it may be remarked that in their reductions of the experimental data 
Ingard & Singhal (1974) and Ahrens & Ronneberger (1971) assumed that the ampli- 
tudes of the standing wave patterns were proportional to 

exp { k a p  %I/( 1 k MI), 

and that ap is independent of the direction of propagation. The validity of this hypothesis 
may be questioned at the higher Mach numbers, and indicates that a reappraisal of the 
experimental data may well be necessary for M 2 0.3. A non-trivial extension of the 
present theory is also necessary in order to account for the relatively large attenuations 
observed for such values of M .  An approach based on a two-tier model of the boundary- 
layer equations, involving the matching of solutions in an inner region where 
convection by the mean flow is small with those valid in an outer region where the 
convection velocity may be iegarded as constant, may possibly be adequate for 
this purpose. 
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